Part Number Hot Search : 
CAT24 PHP36N06 045CT LC100 AOZ1020 TN1177 RT9701CB AN110
Product Description
Full Text Search
 

To Download DG408DQ Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  dg408/409 vishay siliconix document number: 70062 s-52433erev. e, 06-sep-99 www.siliconix.com  faxback 408-970-5600 5-1 8-ch/dual 4-ch high-performance cmos analog multiplexers          low on-resistanceer ds(on) : 100   low charge injectioneq: 20 pc  fast transition timeet trans : 160 ns  low powerei supply : 10  a  single supply capability  44-v supply max rating  ttl compatible logic  reduced switching errors  reduced glitching  improved data throughput  reduced power consumption  increased ruggedness  wide supply ranges (  5 v to  20 v)  data acquisition systems  audio signal routing  ate systems  battery powered systems  high rel systems  single supply systems  medical instrumentation    the dg408 is an 8-channel single-ended analog multiplexer designed to connect one of eight inputs to a common output as determined by a 3-bit binary address (a 0 , a 1 , a 2 ). the dg409 is a dual 4-channel differential analog multiplexer designed to connect one of four differential inputs to a common dual output as determined by its 2-bit binary address (a 0 , a 1 ). break-before-make switching action protects against momentary crosstalk between adjacent channels. an on channel conducts current equally well in both directions. in the off state each channel blocks voltages up to the power supply rails. an enable (en) function allows the user to reset the multiplexer/demultiplexer to all switches off for stacking several devices. all control inputs, address (a x ) and enable (en) are ttl compatible over the full specified operating temperature range. applications for the dg408/409 include high speed data acquisition, audio signal switching and routing, ate systems, and avionics. high performance and low power dissipation make them ideal for battery operated and remote instrumentation applications. designed in the 44-v silicon-gate cmos process, the absolute maximum voltage rating is extended to 44 v. additionally, single supply operation is also allowed. an epitaxial layer prevents latchup. for additional information please see technical article ta201 (faxback number 70600).      
         s 3 a 0 s 6 d s 4 a 1 s 8 s 7 en dual-in-line soic and tssop a 2 v gnd s 1 v+ s 2 s 5 decoders/drivers 1 2 3 4 5 6 7 16 15 14 13 12 11 10 top view 89 a 0 d a a 1 d b en gnd v v+ s 1a s 1b s 2a s 2b s 3a s 3b s 4a s 4b dual-in-line soic and tssop decoders/drivers 1 2 3 4 5 6 7 16 15 14 13 12 11 10 top view 89 dg408 dg409
dg408/409 vishay siliconix www.siliconix.com  faxback 408-970-5600 5-2 document number: 70062 s-52433erev. e, 06-sep-99        
       a 2 a 1 a 0 en on switch x x x 0 none 0 0 0 1 1 0 0 1 1 2 0 1 0 1 3 0 1 1 1 4 1 0 0 1 5 1 0 1 1 6 1 1 0 1 7 1 1 1 1 8      a 1 a 0 en on switch x x 0 none 0 0 1 1 0 1 1 2 1 0 1 3 1 1 1 4 logic a0o = v al  0.8 v l og i c a1o =v ah  2.4 v logic 1 = v ah  2 . 4 v x = don't care    
     temp range package part number 40 85 c 16-pin plastic dip dg408dj 40 to 85  c 16-pin soic dg408dy 16-pin tssop DG408DQ 55 125 c 16 pi c dip dg408ak 55 to 125  c 16-pin cerdip dg408ak/883 55 to 125  c 5962-9204201mea lcc-20* 5962-9204201m2a    
     temp range package part number 40 85 c 16-pin plastic dip dg409dj 40 to 85  c 16-pin soic dg409dy 16-pin tssop dg409dq 55 125 c 16 pi c dip dg409ak 55 to 125  c 16-pin cerdip dg409ak/883 55 to 125  c 5962-9204202mea lcc-20* 5962-9204202m2a *block diagram and pin configuration not shown.       voltage referenced to v v+ 44 v . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . gnd 25 v . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . digital inputs a , v s , v d (v) 2 v to (v+) +2 v or . . . . . . . . . . . . . . . . . . . . . . . . 20 ma, whichever occurs first current (any terminal) 30 ma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . peak current, s or d (pulsed at 1 ms, 10% duty cycle max) 100 ma . . . . . . . . . . . . . . . . . . . . . . . . storage temperature (ak suffix) 65 to 150  c . . . . . . . . . . . . . . . . . . (dj, dy suffix) 65 to 125  c . . . . . . . . . . . . . . power dissipation (package) b 16-pin plastic dip c 450 mw . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-pin narrow soic and tssop d 600 mw . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-pin cerdip e 900 mw . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . lcc-20 f 750 mw . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . notes a. signals on s x , d x or in x exceeding v+ or v will be clamped by internal diodes. limit forward diode current to maximum current ratings. b. all leads soldered or welded to pc board. c. derate 6 mw/  c above 75  c. d. derate 7.6 mw/  c above 75  c. e. derate 12 mw/  c above 75  c. f. derate 10 mw/  c above 75  c.
dg408/409 vishay siliconix document number: 70062 s-52433erev. e, 06-sep-99 www.siliconix.com  faxback 408-970-5600 5-3 specifications a test conditions unless otherwise specified a suffix 55 to 125  c d suffix 40 to 85  c parameter symbol v+ = 15 v, v = 15 v v al = 0.8 v, v ah = 2.4 v f temp b typ c min d max d min d max d unit analog switch analog signal range e v analog full 15 15 15 15 v drain-source on-resistance r ds(on) v d =  10 v, i s = 10 ma room full 40 100 125 100 125  r ds(on) matching between channels g  r ds(on) v d =  10 v room 15 15 % source off leakage current i s(off) v s =  10 v, v d =  10 v v en = 0 v room full 0.5 50 0.5 50 0.5 5 0.5 5 a drain off leakage current i d(off) v d =  10 v v s =  10 v dg408 room full 1 100 1 100 1 20 1 20 a drain of f leakage current i d(off) v s =  10 v v en = 0 v dg409 room full 1 50 1 50 1 10 1 10 na drain on leakage current i d(on) v s = v d =  10 v sequence each dg408 room full 1 100 1 100 1 20 1 20 drain on leakage current i d(on) sequence each switch on dg409 room full 1 50 1 50 1 10 1 10 digital control logic high input voltage v inh full 2.4 2.4 v logic low input voltage v inl full 0.8 0.8 v logic high input current i ah v a = 2.4 v, 15 v full 10 10 10 10  a logic low input current i al v en = 0 v, 2.4 v, v a = 0 v full 10 10 10 10  a logic input capacitance c in f = 1 mhz room 8 pf dynamic characteristics transition time t trans see figure 2 full 160 250 250 break-before-make interval t open see figure 4 room 10 10 enable turn-on time t on(en) see figure 3 room full 115 150 225 150 ns enable turn-off time t off(en) g room 105 150 150 charge injection q c l = 10 nf, v s = 0 v room 20 pc off isolation h oirr v en = 0 v, r l = 1 k  f = 100 khz room 75 db source off capacitance c s(off) v en = 0 v, v s = 0 v, f = 1 mhz room 3 f drain off capacitance c d(off) v0vv0v dg408 room 26 f drain of f capacitance c d(off) v en = 0 v, v d = 0 v f1mh dg409 room 14 pf drain on capacitance c d(on) en , d f = 1 mhz dg408 room 37 drain on capacitance c d(on) dg409 room 25 power supplies positive supply current i+ v en = v a = 0 v or 5 v full 10 75 75  a negative supply current i v en = v a = 0 v or 5 v full 1 75 75  a positive supply current i+ v en = 2.4 v, v a = 0 v room full 0.2 0.5 2 0.5 2 ma negative supply current i en , a full 500 500  a
dg408/409 vishay siliconix www.siliconix.com  faxback 408-970-5600 5-4 document number: 70062 s-52433erev. e, 06-sep-99 
 
    test conditions unless otherwise specified a suffix 55 to 125  c d suffix 40 to 85  c parameter symbol v+ = 12 v, v = 0 v v al = 0.8 v, v ah = 2.4 v f temp b typ c min d max d min d max d unit analog switch drain-source on-resistance e, f r ds(on) v d = 3 v, 10 v, i s = 1 ma room 90  dynamic characteristics switching time of multiplexer e t trans v s1 = 8 v, v s8 = 0 v, v in = 2.4 v room 180 enable turn on time e t on(en) v inh = 2.4 v, v inl = 0 v v5v room 180 ns enable turn off time e t off(en) inh , inl v s1 = 5 v room 120 charge injection e q c l = 1 nf, v s = 6 v, r s = 0 room 5 pc notes a. refer to process option flowchart. b. room = 25  c, full = as determined by the operating temperature suffix. c. typical values are for design aid only, not guaranteed nor subject to production testing. d. the algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet. e. guaranteed by design, not subject to production test. f. v in = input voltage to perform proper function. g.  r ds(on) = r ds(on) max r ds(on) min. h. worst case isolation occurs on channel 4 do to proximity to the drain pin.
dg408/409 vishay siliconix document number: 70062 s-52433erev. e, 06-sep-99 www.siliconix.com  faxback 408-970-5600 5-5   
           source/drain capacitance vs. analog voltage (pf) c s, d v analog analog voltage (v) 015 15 0 20 40 80 60 v+ = 15 v v = 15 v c d(off) c s(off) 10 5 5 10 drain leakage current vs. source/drain voltage (single 12-v supply) (pa) i d v d drain voltage (v) 12 010 6 2 4 8 60 40 20 60 40 0 20 dg408 i d(off) dg409 i d(off) dg409 i d(on) dg408 i d(on) v s = 0 v for i d(off) v s = v d for i d(on) input switching threshold vs. supply voltage (v) th v +v supply (v) 12 20 48 16 0.0 0.5 2.0 1.5 1.0 negative supply current vs. switching frequency i switching frequency (hz) 10 k 10 m 100 1 k 100 k 1 m v supply =  15 v 100 ma 1 ma 100  a 10  a 1  a 0.1  a 10 ma v en = 2.4 v v en = 0 v or 5 v c d(on) dg408 i d(on) , i d(off) source leakage current vs. source voltage drain leakage current vs. source/drainvoltage (na) i s(off) (pa) i d v d or v s e drain or source voltage (v) v s source voltage (v) 015 15 140 60 20 100 60 20 100 v+ = 15 v v = 15 v v s = v d for i d(off) v d = v s(open) for i d(on) dg409 i d(off) 10 5 5 10 0 15 15 10 0 10 20 15 5 5 v+ = 15 v v = 15 v v+ = 12 v v = 0 v 10 5 5 10 dg409 i d(on)
dg408/409 vishay siliconix www.siliconix.com  faxback 408-970-5600 5-6 document number: 70062 s-52433erev. e, 06-sep-99   
           positive supply current vs. switching frequency i supply vs. temperature i+ switching frequency (hz) 10 k 10 m 100 1 k 100 k 1 m v supply =  15 v 100 ma 10 ma 1 ma 100  a 10  a v en = 2.4 v v en = 0 v or 5 v i+, i temperature (  c) 125 55 85 45 5 v supply =  15 v v a = 0 v v en = 0 v i+ (i) 100 ma 1 ma 100 na 10 na 1 na 100 pa 10 pa 10 ma 35 15 25 65 105 charge injection vs. analog voltage positive supply current vs. temperature (dg408) q (pc) i+ (  a) temperature (  c) v s source voltage (v) 5 15 20 10 125 55 85 45 5 0 v+ = 15 v v = 15 v v in = 0 v v en = 0 v 35 15 25 65 105 10 30 50 90 70 40 0 80 60 20 10 015 15 10 5 5 10 v+ = 15 v v = 15 v v+ = 12 v v = 0 v c l = 10,000 pf v in = 5 vp-p r ds(on) vs. v d and supply r ds(on) vs. v d and supply (single supply) r ds(on) ()  r ds(on) ()  v d drain voltage (v) v d drain voltage (v) 0 40 100 60 80 120 20 20 12 8 4 0 4 8 12 16 20 16  5 v  8 v  10 v  12 v  20 v 22 0 0 40 100 60 140 160 80 120 20 4 8 12 16 20 v+ = 7.5 v 10 v 12 v 15 v 20 v 22 v v = 0 v  15 v
dg408/409 vishay siliconix document number: 70062 s-52433erev. e, 06-sep-99 www.siliconix.com  faxback 408-970-5600 5-7   
           r ds(on) vs. v s and temperature r ds(on) vs. v s and temperature (single supply) r ds(on) ()  r ds(on) ()  v s source voltage (v) v s source voltage (v) 015 15 0 40 60 80 50 10 70 30 20 v+ = 15 v v = 15 v 125  c 85  c 25  c 55  c 10 5 5 10 12 8 4 0 10 30 50 70 90 110 130 v+ = 12 v v = 0 v 55  c 40  c 0  c 125  c 85  c 25  c 2610 off isolation and crosstalk vs. frequency insertion loss vs. frequency loss (db) (db) f frequency (hz) f frequency (hz) 10 k 10 m 30 70 90 50 100 1 k 100 k 1 m 110 100 m 130 150 v+ = 15 v v = 15 v r l = 1 k  off-isolation crosstalk 10 m 5 2 1 1 0 4 3 6 v+ = 15 v v = 15 v ref. 1 vrms r l = 50  r l = 1 k  10 100 1 k 10 k 100 k 1 m 100 m switching time vs. single supply switching time vs. bipolar supply t (ns) t (ns) v supply (v) v supply (v) 15 8 100 150 225 175 200 250 125 91214 13 11 10 275 t trans t off(en) t on(en) 75 125 200 150 175 100 t off(en) t on(en) t trans  10  12  14  16  18  20  22 40  c 0  c
dg408/409 vishay siliconix www.siliconix.com  faxback 408-970-5600 5-8 document number: 70062 s-52433erev. e, 06-sep-99   
 
 
     figure 1. en a 0 s 1 d v+ s n v decode/ drive level shift v v+ v ref a x gnd v+  

 figure 2. transition time a 1 a 0 a 2 a 1 a 0 +15 v 15 v en v+ v gnd d 35 pf v o s 1 s 2 s 7 s 8 50  300   10 v  10 v +15 v 15 v en v+ v gnd 35 pf v o s 1 s 1a s 4a , d a s 4b 50  300   10 v  10 v d b logic input switch output v s8 v o t trans t r <20 ns t f <20 ns s 8 on s 1 on t trans 0 v v s1 50% 90% 90% 3 v 0 v dg408 dg409
dg408/409 vishay siliconix document number: 70062 s-52433erev. e, 06-sep-99 www.siliconix.com  faxback 408-970-5600 5-9   figure 3. enable switching time logic input switch output v o t r <20 ns t f <20 ns 3 v 0 v 0 v t off(en) t on(en) 50% 90% 10% v o en s 1 s 2 s 8 a 0 a 1 a 2 50  1 k  v o v+ gnd v d 5 v 35 pf 15 v +15 v s 1b s 1a s 4a , d a s 2b s 4b d b en a 0 a 1 50  1 k  v o v+ gnd v 5 v 35 pf 15 v +15 v dg408 dg409 figure 4. break-before-make interval 50% 80% logic input switch output v o v s t open t r <20 ns t f <20 ns 0 v 3 v 0 v en v+ gnd v +5 v 35 pf 15 v +15 v +2.4 v a 2 d b , d all s and d a 300  v o 50  a 1 a 0 dg408 dg409
dg408/409 vishay siliconix www.siliconix.com  faxback 408-970-5600 5-10 document number: 70062 s-52433erev. e, 06-sep-99   figure 5. charge injection a 0 en a 1 a 2 v o v+ gnd v d 15 v +15 v r g s x c l 10 nf channel select 3 v 0 v off on logic input switch output  v o  v o is the measured voltage due to charge transfer error q, when the channel turns off. q = c l x  v o off figure 6. off isolation figure 7. crosstalk r l 1 k  v o v+ gnd v 15 v +15 v a 2 d a 1 a 0 s 8 s x v s en r g = 50  off isolation = 20 log v out v in v in r l 1 k  v o v+ gnd v 15 v +15 v a 2 d a 1 a 0 s 8 s x v s en r g = 50  crosstalk = 20 log v out v in v in s 1 figure 8. insertion loss r l 1 k  a 2 v o d r g = 50  insertion loss = 20 log v out a 1 v in a 0 v s s 1 v+ gnd v 15 v +15 v en figure 9. source drain capacitance f = 1 mhz s 1 d en +15 v 15 v gnd v+ v meter hp4192a impedance analyzer or equivalent s 8 a 1 a 2 a 0 channel select
dg408/409 vishay siliconix document number: 70062 s-52433erev. e, 06-sep-99 www.siliconix.com  faxback 408-970-5600 5-11    
overvoltage protection a very convenient form of overvoltage protection consists of adding two small signal diodes (1n4148, 1n914 type) in series with the supply pins (see figure 10). this arrangement effectively blocks the flow of reverse currents. it also floats the supply pin above or below the normal v+ or v value. in this case the overvoltage signal actually becomes the power supply of the ic. from the point of view of the chip, nothing has changed, as long as the difference v s (v) doesn't exceed +44 v. the addition of these diodes will reduce the analog signal range to 1 v below v+ and 1 v above v, but it preserves the low channel resistance and low leakage characteristics. 1n4148 dg408 d v v+ 1n4148 s x v g figure 10. overvoltage protection using blocking diodes en a 0 a 1 +15 v (mux on-off control) analog inputs (outputs) clock in nc enable in analog output (input) +15 v 15 v dg408 d en gnd dm7493 v+ v nc gnd +15 v 8-channel sequential multiplexer/demultiplexer analog inputs (outputs) analog outputs (inputs) +15 v 15 v dg409 gnd v+ v differential differential clock in nc gnd +15 v nc 6 reset enable differential 4-channel sequential multiplexer/demultiplexer j k clk j k clk clear clear q s 5 s 7 s 6 s 8 s 1 s 3 s 2 s 4 s 1a s 3a s 2a s 4a s 1b s 3b s 2b s 4b d a d b a 0 a 1 a 2 b in a in r 01 r 02 q b q c q d q a 1/2 mm74c73 1/2 mm74c73 figure 11. q q q


▲Up To Search▲   

 
Price & Availability of DG408DQ

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X